

1

Saturn Studio II - STL Analysis Suite Version 1.04

www.amotronics.de

ILANE

Latest changes: 16 March 2015 1:05 PM

Axilane Instruments, 81 rue des Joncs Marins, 91620 La Ville du Bois - tél : 09.05.60.40.20 fax: 09.55.60.40.20 - Web: www.axilane.com - eMail: info@axilane.com

2

Index

2	Saturn Studio II – Butt2.1Project2.2New Campaign2.3New Project2.4Edit Project2.5Save Project2.6Channels2.7Setup2.8Control2.9Live Monitor2.9.1Digital value2.9.2Gauge2.9.3Slide2.9.4Tacho2.9.5Temperature2.10Analysis2.11Analysis – CLT, NLT2.12Options	ton bar functions	5 6 7 8 9 9 10 10 10 11 12 12 12 12 12
	 2.1 Project 2.2 New Campaign 2.3 New Project 2.4 Edit Project 2.5 Save Project 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL¹ 2.12 Options 		6 7 8 9 9 10 10 10 11 12 12 12 12 12 12
	 2.2 New Campaign 2.3 New Project 2.4 Edit Project 2.5 Save Project 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL² 2.12 Options 		7 8 9 9 10 10 11 12 12 12 12 12 12
	 2.3 New Project 2.4 Edit Project 2.5 Save Project 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL¹ 2.12 Options 		7 8 9 10 10 11 12 12 12 12 12 12
	 2.4 Edit Project 2.5 Save Project 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NLT 2.12 Options 		8 9 10 10 11 12 12 12 12 12 12
	 2.5 Save Project 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL¹ 2.12 Options 		9 9 10 10 11 12 12 12 12 12 12
	 2.6 Channels 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NLT 2.12 Options 		9 10 10 11 12 12 12 12 12 12
	 2.7 Setup 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NLT 2.12 Options 		10 10 11 12 12 12 12 12 12
	 2.8 Control 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL¹ 2.12 Options 		10 11 12 12 12 12 12 12
- - - -	 2.9 Live Monitor 2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL² 2.12 Options 		11 12 12 12 12 12 12
	2.9.1 Digital value 2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL [*] 2.12 Options		12 12 12 12 12 12
	2.9.2 Gauge 2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL [*] 2.12 Options		12 12 12 12 12
-	2.9.3 Slide 2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL ¹ 2.12 Options		12 12 12
4	2.9.4 Tacho 2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL 2.12 Options		12 12
4	2.9.5 Temperature 2.10 Analysis 2.11 Analysis – CLT, NL [*] 2.12 Options		12
4	 2.10 Analysis 2.11 Analysis – CLT, NL² 2.12 Options 		4 5
	2.11 Analysis – CLT, NL 2.12 Options		15
-	Z.IZ ODUOIIS	1, ST1, TD1, LAT	15
4	212 About		10
-	2.15 ADUUL 2.14 Ouit		10
-	2.14 Quit 2.15 Saturn icon		10
2	2.15 Suturn con		10
3	Saturn Studio II - Serie	es Tests	17
3	3.1 How to configure	a series test	17
3	3.2 How to start the a	cquisition	20
2	3.3 How to analyze a	test	21
-	3.4 How to customize	reports	23
	3.4.1 NI DIAdem PDF	report templates	23
	3.4.2 MS Word repor	t templates	24
4	STL – Capacitive Load	Test (CLT)	26
2	4.1 Channel configura	tion	26
	4.1.1 Current channe	l configuration for IL1, IL2 & IL3	27
	4.1.2 Phase voltage c	hannel configuration for UL1, UL2 & UL3	27
	4.1.3 Load voltage ch	annel configuration for U_Load_L1, U_Load_L2 & U_Load_L3	27
	4.1.4 ON-OFF channe	el configuration	28
	4.1.5 Travel channel	configuration	28
	4.1.6 Trigger configur	ration	28
4	4.2 Display of Capacit	ive Load Test	28
2	4.3 Automatic Analysi	s of Capacitive Load Tests	30
2	4.4 Manual Analysis o	f Capacitive Load Tests	31
5	STL – Synthetic Test /	Making Breaking Test (MBT)	37
1	5.1 Channel configura	tion	37
	5.1.1 Current channe	l configuration for IL1, IL2 & IL3	38
	5.1.2 Phase voltage c	hannel configuration for UL1, UL2 & UL3	38
	5.1.3 ON-OFF channe	el configuration	38
	5.1.4 Travel channel	configuration	38
	5.1.5 Trigger configur	ration	39
1	5.2 Display of Making	Breaking Test	39
1	5.3 Automatic Analysi	's of Making Breaking Tests	41

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

3

	5.4	Manual Analysis of Making Breaking Tests	42
	5.5	Separate TRV Analysis	50
	5.5.	1 Manual analysis	50
	5.5.	2 Analysis Result List	51
	5.5.	3 MS Word report	51
6	ST	L – No-Load Test (NLT)	53
	6.1	Channel configuration	53
	6.1.	1 Current channel configuration for L1, L2 & L3	54
	6.1.	2 ON-OFF channel configuration	54
	6.1.	3 Travel channel configuration	54
	6.1.	4 Irigger configuration	54
	6.2 6.2	Display of No-Load test	54 55
	0.5	Analysis of No-Loud lesis	55
7	ST	L – Short Time Current Test (STC)	60
	7.1	Channel configuration	60
	7.1.	1 Channel configuration for IL1, IL2, IL3	61
	7.1.	Display of Short Time Current Tect (STC)	61 61
	7.2	Automatic Analysis of Short Time Current Tests	62
	7.4	Manual Analysis of Short Time Current Tests	63
0	CT		~~
0	ک 21	Channel configuration	60
	81	1 Channel configuration for II 1 II 2 II 3	67
	8.1.	2 Trigger configuration	67
	8.2	Display of Internal Arc Test (IAT / LAT)	67
	8.3	Automatic Analysis of Internal Arc Tests	68
	8.4	Manual Analysis of Internal Arc Tests	68
9	ST	'L Test	72
	9.1	Single current analysis	72
1() Tr	oubleshooting	75
11	1 Ple	ease remember	75
12	2 Ce	ertificate of conformity	76
13	3 Co	ontact	77
AI	NNEX A	Path generator definition file	78
AI	NNEX B	Result parameters	82
	B.1	Basic Short-Circuit Test Duty T60	82
	B.2	Cable-Charging Current Switching Tests	83
	В.З	No-Load Operations	84
	B.4	Short-Circuit Making Tests	84
	B.5	Out-of-phase Making and Breaking Tests, Test Duty OP2	85
	B.6	Short-Time Withstand Current and Peak Withstand Current Tests	86
	B.7	Basic Short-Circuit Test Duty T100a	87

B.7 Basic Short-Circuit Test Duty T100a

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

1 Saturn Studio II – STL Analysis Suite

The Saturn Studio II – STL Analysis Suite is a fully automatic analysis package for typical high voltage tests.

The Short-Circuit Testing Liaison (STL) provides a forum for voluntary international collaboration between testing organizations. The basic aim is the harmonized application of IEC and Regional Standards to the type testing of electrical power equipment.

The analysis is based on the recommendations of the short-circuit testing liaison STL <u>www.stl-liaison.org</u>.

4

2 Saturn Studio II – Button bar functions

Saturn Studio II is launched and comes up with a login screen which allows selecting from different screen setups and user levels. *STL Analysis- Wizard* will launch the Software with a specific screen setup and additional functions for STL Analysis.

🥰 LOGIN		×
Administrato Viewer [view Standard [sta Startup Wiza STL Analysis	r [admin] er] Indard] rd [wizard] - Wizard [STL wizard]	×
LOGIN S PASSWORD	TL wizard	LOGIN

Figure 1: Login

After selecting **"STL Analysis – Wizard"** and pressing *LOGIN* the STL specific button bar of Saturn Studio II shows up on top of the screen:

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	
PROTECT	NEW CAMPATON	NEW PR1	EDIT ER 1	SAVE FR1	CHANNELS	SETLIP	CONTROL	LIVE MONITOR	ANALYSIS		OPTIONS	ABOUT		

Figure 2: Button Bar

In addition the "Startup Wizard" window is opened:

a STARTUP WIZARD	•••
SOFTWARE STARTUP	
Guided	startup \bigtriangledown
SYSTEM SELECTION	
Define DEFAULT in OPTIONS - STARTUP	
В	REAK

Figure 3: Startup Wizard

For using the software for *offline analysis* the button **BREAK** is the right choice.

For connecting with a Saturn System and for performing measurements the user has the choice between *"Guided Startup"* and *"Manual configuration"*. In the latter case the user has to set up everything manually.

Guided startup will guide the user step by step through the process of connecting with a Saturn System, configuring a measurement and the screen display.

The two buttons **"DEFAULT"** and **"SELECTION MENU"** define how the software should connect to the Saturn System. "DEFAULT" follows the startup settings as configured in the global menu OPTIONS of the software. This is the right choice if the software has been setup to automatically connect with a dedicated Saturn System.

Otherwise the user should choose **SELECTION MENU**.

This will open the **"SELECT SYSTEM"** dialog which allows to search for Saturn Systems on the same PC or via the network, allows to (re-)start the server software on the Saturn System and also allows to remotely (re-)boot or shut down the Saturn System.

The Button "EDIT SYSTEM LIST" allows it to define the IP addresses of known Saturn Systems within the network.

SELECT SYSTEM			×
SATURN DEMO-System			SATURN SERVER SOFTWARE START STOP RESTART
			REHOTE SYSTEM - POWER ON REBOOT SHUTDOWN
CONNECT	RESCAN	EDIT SYSTEM LIST	BREAK

Figure 4: Select System

By choosing *CONNECT* the software connects to the server on the selected Saturn System. After the connection is established properly the SETUP screen is opened, if *"Guided Startup"* was selected ion the previous dialog. For details how to configure the channels, please refer to the Saturn Studio II - manual.

The following chapters describe the function of the individual buttons of the main menu bar and how they are used.

2.1 Project

The **PROJECT** button opens the project management window to navigate in previously stored projects with **LOAD**. You can also use the project management window to individually store data with **SAVE** or **SAVE** AS functions. Standard storage works with CAMPAIGN management.

Section Project INFO	×
PROJECT DATA	
INFO	·
TITLE	test
DATE	22.05.2009 20:05:31
AUTHOR	unknown
DESC	no info available
LAST_CHANGE	
LAST_USER	
TYPE	NLT
SUBTYPE	NLT_RATED
Uod	110
Ucd	
	\data\DEMO\STL\MBT\MBT_1_NLT_MBT\2
	8
EPORI	g
	Ť
	<u> </u>
[+] ALL [-] ALL SHOW EMPTY 🤝	·
	DAVE DAVE AS

Figure 5: Project Info

2.2 New Campaign

To start a new measurement series/campaign the *NEW CAMPAIGN* button is used to configure the path where the project will be stored.

🥰 PLEASE CONFIGURE NEW CAMPAIGI	N .		×
Modify entries in VIEW-OPTIONS	MENU		
Testing Department	Own products	I	
Type of testobject	Power Switch	A	
Typical Voltage	less than 10 / 12 kV	0	
Short current	80 kA	8	
Typical Current	4000 A and more	9	
Type of test	mechanical test at complete system	A	
PROJECT ROOT PATH			T
% \\Saturn-01\Saturn_Data\			
GENERATED PROJECT PATH			
\\Saturn-01\Saturn_Data\IA 089 A	001		
ОК	CA	NCEL	

Figure 6: Path Generator

The path generator helps to organize the tests and shots. The storage structure itself needs to be defined by the customer to perfectly need the individual requirements. Confirm the selection with OK. The path structure is automatically generated from the chosen parameters and easily can be customized.

To modify the available entries open a view window, select the *OPTIONS* menu and point to *STL-New Campgn. Settings*. How to modify the definition file is described in detail in ANNEX A.

Figure 7: Path Generator Options

2.3 New Project

The campaign management of Saturn Studio II supports different types of tests within one campaign / series. STL typical No Load tests prior to e.g. Synthetic tests this way can be filed within a single campaign. *NEW PRJ* opens the configuration window to define the type of measurement for the next shot. Consequently this selection has to be done for each shot. Depending on the selection the software automatically generates the file structure for the further automatic analysis.

# 2	×
NEW PROJECT	
САРАСП	
NO	LOAD
SYNT	
THERMO	DYNAMIC
LIGHTN	VING ARC
AUTOSAVE ME	ASUREMENT DATA

Figure 8: New Project

It can also be defined whether to *AUTOSAVE* the data directly after the shot or not. Auto-save is recommended.

8

2.4 Edit Project

EDIT PRJ opens a window displaying the current project information. The entries can be modified, which is recommended for experienced users only to ensure valid file and folder structures for later automatic analysis.

Figure 9: Edit Project

2.5 Save Project

SAVE PRJ stores the project and measurement data at the destination defined in the campaign. This is what the auto-save does automatically. Overwrite control is available to prevent accidental loss of data.

NVERWRITE PROJECT	AMO tronics
	OVERWRITE
	BREAK

Figure 10: Overwrite Project

2.6 Channels

The *CHANNELS* button opens the Saturn Studio II standard AVAILABLE CHANNELS window. Refer to the according manual for further details.

🕰 AVAILABLE (CHANNELS	
CHANNEL	NAME	
 S1M1C1 	51M1C1	
 \$1M2C1 	51M2C1	
 S1M2C2 	51M2C2	
 \$1M2C3 	S1M2C3	
 \$1M2C4 	S1M2C4	
		T
O INACTI	VE S	ORT BY
ACTIVE	FUN	CTION 🗸
		SYNTHETIC
	Р	

Figure 11: Available Channels

10

2.7 Setup

The *SETUP* button opens the Saturn Studio II standard setup window. Refer to the according manual for further details.

ita Chann	els Trig	iger Source	s Syste	em Overv	iew					
hannel	Name	Mode	Range	Offset	Input Range	Trigger	Pretr.	Phys. Range	Rate	Sample Time (count)
1M1⊂1	S1M1C1	Single	2.00 V	0%	-1.000V 1.000V	G1	10.0%	-1.000V 1.000V	25.0MHz	-40.00us360.00us (10000)
IM1C2	S1M1C2	Off	2.00 V	0%	-1.000V 1.000V	G1	0.0%	-1.000V 1.000V	25.0MHz	40.00us (1000)
IM1C3	S1M1C3	Off	2.00 V	0%	-1.000V 1.000V	G1	0.0%	-1.000V 1.000V	25.0MHz	40.00us (1000)
IM1⊂4	S1M1C4	Off	2.00 V	0%	-1.000V 1.000V	G1	0.0%	-1.000V 1.000V	25.0MHz	40.00us (1000)
M2C1	S1M2C1	Single	2.00 V	0%	-1.000V 1.000V	G1	10.0%	-1.000V 1.000V	25.0MHz	-40.00us360.00us (10000)
IM2C2	S1M2C2	Single	2.00 V	0%	-1.000V 1.000V	G1	10.0%	-1.000V 1.000V	25.0MHz	-40.00us360.00us (10000)
LM2C3	S1M2C3	Single	2.00 V	0%	-1.000V 1.000V	G1	10.0%	-1.000V 1.000V	25.0MHz	-40.00us360.00us (10000)
M2C4	S1M2C4	Single	2.00 V	0%	-1.000V 1.000V	G1	10.0%	-1.000V 1.000V	25.0MHz	-40.00us360.00us (10000)
					l					
TIVE CH	ANNELS	LL CHANNE	.5							
ame	ANNELS AI Amplifier ut Type Off	Recordin Coupling	.S ng Trig	ger Tr	iggerTime Options	Segment	ation			
ame	ANNELS AI Amplifier ut Type Off		s Trig	ger Tr Fermination	iggerTime Options	Segment	ation			
Inpe CH	ANNELS AI Amplifier ut Type off 2.00 V	Coupline Offset	_5 ng Trig	ger Tr Fermination	iggerTime Options	Segment	ation			
Inpe	ANNELS AI Amplifier off 2.00 V be Type	Couplin Couplin Offset	s Trig	ger Tr	iggerTime Options	Segment	ation	Physical Factor		
Iame	Annels A Amplifier Off 2.00 V be Type passive	Coupling Coupling Offset Offset Probe D	s Trig	ger T	iggerTime Options	Segment	ation	Physical Factor		
ame Inp A Ran	ANNELS AI Amplifier Ut Type Off 2.00 V be Type passive	Coupling Coupling Offset 0 Probe D	s Trig	ger Tr	iggerTime Options	Segment	ation	Physical Factor		
ame Inp Ran	ANNELS A Amplifier off 2.00 V passive	Couplin Couplin Couplin Offset	s Trig	ger Tr	iggerTime Options	Segment	ation	Physical Factor	SIN ma ma ma Physical Off 0.0000000	GLE CHANNEL MODE c. Sample Rate: 100 MHz c. Data Count: 115 M set Unit 000 V

Figure 12: Channel Setup

2.8 Control

The *CONTROL* button opens the Saturn Studio II standard CONTROL window.

The ARM button arms the system to expect a trigger.

Refer to the according manual for further details.

Figure 13: System Control

11

2.9 Live Monitor

Point to *LIVE MONITOR* to open the Saturn Studio II live monitor window. It allows display of up to 8 channels to monitor attached signals. The display speed of the monitor channels is limited to human eye capabilities. However, the sample speed configured in the setup is the sample speed for the channel. For the monitor display the sampled data is integrated.

Please note!

Keep in mind that due to its structure and purpose of a monitor the display speed is limited.

Figure 14: Live Monitor with xy display

Alternatively to the standard x-y charts special display types are available. They can be selected individually per channel with the UP-DOWN arrows in the bottom right corner of each channel. Depending on the input signal one type or the other might be preferred for display.

2.9.1 Digital value

Huge numbers display the current average value of the attached signal with 6 digits precision.

2.9.2 Gauge

×

The gauge and digital value both show the current average value of e.g. acceleration or velocity.

2.9.3 Slide

The slider bar moves to display the current average value of the attached signal. It is e.g. useful for a way signal.

2.9.4 Tacho

Analog tacho (speedometer) and digital value both show the average value of the connected signal.

2.9.5 Temperature

The thermometer column shows the average value next to the digital display in level and color. It might be picked for a temperature channel.

Figure 16: Thermometer column

Figure 15: Live Monitor with alternative displays

The color changes continuously from green via yellow to red indicating a temperature level.

For the standard xy display it can be selected from three different types of display to show the range of the input signal; Simple *Average*, *Average* + *MinMax* display or *Average* + *MinMax* Line.

Figure 17: Mode Control - Average

Figure 18: Mode Control - Average + MinMax

Figure 19: Mode Control - Average + MinMax Line

In the right part of the *OPTION* window the available channels are listed, by individual or multi select and pointing to the *LEFT* arrow the channels can be selected for monitoring. The *RIGHT* arrow disables monitoring of selected channels from the left list. Confirm the selection with *OK*.

14

new Constant American Ame American American Amer							
Live Monitor Options							
	Available Chanr	nel List					
	CHANNEL	NAME	A				
Monitor List RESET	● S1M1C1	51M1C1					
	 \$1M2C1 	51M2C1					
CHANNEL NAME	 \$1M2C2 	S1M2C2					
	 \$1M2C3 	S1M2C3					
	 \$1M2C4 	S1M2C4					
<							
-> 1			_				
			_				
			_				
			_				
			τ				
			_				
Mode Control							
average average + MinMax	average + MinMax L	ine					
	-						
1-							
Uaverag	\sim						
≣ o-							
м — — — — — — — — — — — — — — — — — — —							
-1-	-235.962	m					
	CANCEL						
	CHRIDEL						

Figure 20: Live Monitor Options

15

2.10 Analysis

The *ANALYSIS* button gives access to the main analysis selection window. The different types of analysis are described in detail later in this document. The menu tree only is shown here.

Figure 21: Analysis Main Menu Tree

2.11 Analysis – CLT, NLT, SYT, TDT, LAT

The specific analysis button is defined "empty" at startup. After the type of test is selected with the **NEW PRJ** function (compare chapter 2.3) the according analysis button is shown for single click

16

access. CLT, NLT, SYT, TDT or LAT can be accessed directly without need for menu navigation. The quick access menu helps to speed up and does not implement further functions.

2.12 Options

The *OPTIONS* button provides access to the Saturn Studio II standard function. Please refer to the according manuals for further information.

The most important options setting is the root path where to store the data. In a local system it can be a local destination e.g. c:\data\... In a network setup the storage path is defined as UNC network path e.g. $\frac{192.168.0.1}{data}$... or $\frac{1}{data}$...

🚜 MENU-B	AR SETU	JP				×		
MONITOR	PATH	ATH SOUND STARTUP MENU BAR ADVANCE						
	_							
SYSTEM	۲ c:\sat	:urn2						
XCHANGE	ፄ \\dom	ino\data\x	change					
PROJECT	۵ \\dom	% \\domino\data						
SEQUENCER	۲ c:\sat	🖁 c:\saturn2\sequencer						
OK	(SYS	TEM DEFAULT	s	CANCEL			

Figure 22: Path Setup

Please note!

The given path is used for the automatic path generator, available in NEW CAMPAIGN. It is transferred to the Saturn System as specified here. Hence it has to be specified to allow the Saturn System to access the destination.

2.13 About

The *ABOUT* button provides access to the Saturn Studio II standard function. Please refer to the according manuals for further information.

2.14 Quit

QUIT terminates the Saturn studio II software and the DIAdem reporting tool after security confirmation.

2.15 Saturn icon

The yellow **SATURN ICON** with a left click opens a graphical overview of the connected hardware and allows disconnecting with a right click. If no hardware is connected, the icon turns blue

and pointing displays the system selection window. Please refer to the according manuals for further information.

www.amotronics.de

17

3 Saturn Studio II - Series Tests

Starting a series measurement with Saturn Studio II is very simple and straight forward. The procedure is identical for all types of test; the windows might vary from test to test. As an example this chapter gives a step-by-step introduction for the typical No Load test. The following chapters define the specific parameters for the different types of test.

3.1 How to configure a series test

After the setup of channels and system is completed, either manually or by software guide, point to **NEW SERIES** (= "NEW CAMPAIGN") to define the path where to store the data.

The automatic project path generator helps organize shots following a custom defined pattern.

🥰 PLEASE CONFIGURE NEW CAMPAIGN 🛛 🔤						
Modify entries in VIEW-OPTIONS	MENU	AMO tronics				
Testing Department	Own products	A I				
Type of testobject	Power Switch	A				
Typical Voltage	less than 10 / 12 kV	0				
Short current	80 kA	8				
Typical Current	4000 A and more	9				
Type of test	mechanical test at complete system	A				
PROJECT ROOT PATH		<u>र</u>				
ፄ \\Saturn-01\Saturn_Data\						
GENERATED PROJECT PATH						
\\Saturn-01\Saturn_Data\IA 089 A 001						
ОК	CANCEL					

Figure 23: Path Generator

Each shot needs information about its type of test to enable the automatic STL analysis. Therefore each shot is started with *NEW PRJ* to define the type of test. The New Project selection window comes up to specify the next project type.

Figure 24: New Project

AUTOSAVE is enabled and **NO LOAD** is selected.

As an example the typical STL No Load test is picked to demonstrate the process chain. For the No Load test, the system should be setup to measure the channels, shown in the *AVAILABLE CHANNELS* list. Full automatic single phase No Load analysis with or without travel signal is possible.

Please note!

The channel recognition uses the channel names. If standard channel names are not used the automatic analysis either fails or asks for the channels to be specified manually.

Which channels to configure and which names to use in detail is described in the according chapters for the different tests below.

Via drag-and-drop the channels can be dropped to any view window to display the channel data. Refer to the standard manuals for further information on VIEW windows and features.

Next step the support voltage is selected. The information is gathered for full reporting only. The No Load analysis is not influenced by these parameters. In the example *RATED* support voltage is selected.

18

SAVAILABLE CHANNELS NAME CHANNEL **I** S1M1C1 L1 S1M1C2 L2 S1M1C3 L3 S1M1C5 ON_OFF S1M1C6 Travel S1M1C7 Current_ON_OFF Ŧ □ ○ INACTIVE SORT BY FUNCTION. ACTIVE SYNTHETIC ADD SYNTHETIC 🗌 🕞 FILE ADD FILE

Figure 25: Available Channels

19

# 2	X			
SUPPORT VOLTAGE	AMO tronics			
MINIMU	м			
RATED				
MAXIMUM				
10 OPENING	SUPPORT VOLTAGE (V)			
20 CLOSING	UPPORT VOLTAGE (V)			

Figure 26: Support Voltage

Basic Project information and details are complete now and stored to the specified destination folder. The menu bar automatically adapts to the specified type of test which is the No Load Test in this example.

[10]	[11]		[10]	[11]	
ANALYSIS		\rightarrow	ANALYSIS	NLT	

Figure 27: Automatic Menu Bar Adaption

3.2 How to start the acquisition

The system is now ready for the first No Load shot. The System can be armed for a single triggered shot by pointing to the top left arrow in the *CONTROL* window. The acquisition will start with the first detected trigger.

If the trigger signal is missing or the configuration is not valid the acquisition can be released manually with the green crossed red line – manual trigger button.

Because AUTOSAVE was enabled in the **NEW PROJECT** window the data is automatically stored after the measurement is completed. In case AUTOSAVE is disabled, **SAVE PRJ** stores the measured data.

20

Figure 28: Control

Figure 29: No Load View Display

The channels have been arranged to *VIEW 1*, as described above, the measurement signals will now be displayed in *VIEW 1*. Data acquisition is finished, either a next shot can be performed or the automatic analysis can be started directly, which might be recommended.

21

3.3 How to analyze a test

To start the No Load analysis point to *ANALYSIS* and select *NLT* or use the quick access button alternatively and point to the *NLT* button below button number 11 to open the *NO LOAD ANALYZE* window.

no load analyze	×
Full Automatic (with Travel) Full Automatic (no valid Travel)	*
Manual select	
	τ.

Figure 30: No Load Analysis Menu

From the menu select the type of analysis you want to do. Make sure all necessary channels are available and named correctly. In the example a valid travel signal is available and therefore the first entry is picked from the menu.

Figure 31: DIAdem transaction

The software automatically runs the DIAdem analysis and reporting module to start the requested analysis.

Please note!

First time DIAdem startup takes longer to launch the module before the data can be transferred, following analysis processes will be faster.

The Analysis can be terminated with the top right red STOP button in the DIAdem transaction window if needed.

The analysis automatically extracts all parameters and generates results and reports to be stored in the projects report folder.

Generation and storage of pdf files per phase

Generation and storage of a summary pdf file

Storage of all calculated values in highest precision (calc.txt)

Storage of all calculated values in formatted values (result.txt)

Transfer of results into word file (No_Load_E.doc) (Available only if MS Word is installed)

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

22

[RESULT] tcl_L1_1=-top_L1_1=47.8 tcl_L1_2=54.7 top_L1_2=47.5 Test_1=3 Test_2=3 trial=CLT_1 NLT_CO topen_L1=97.241 tclose_L1=405.801 operation=OCO travel=YES tcl_L2_1=-top_L2_1=47.9 tcl_L2_2=54.8 top_L2_2=47.5 topen_L2=97.321 tclose_L2=405.871 tcl_L3_1=top_L3_1=48.0 tcl_L3_2=54.8 top_L3_2=47.5 topen_L3=97.381 tclose_L3=405.881 CT=-2282.656 CS=-2260.312 CT_rel=60.141 cs_rel=61.795 U_MAX=-1744.245 U_MIN=-3095.041 tcl=54.8 top=47.9 Uod_1=242 Uod_2=242 Ucd_1=-Ucd_2=242 op_1=0 op_2=co

[RESULT] tcl_L1_1=top_L1_1=0.04782 tcl_L1_2=0.05472 top_L1_2=0.04745 Test_1=3 Test_2=3 trial=CLT_1 NLT_CO topen_L1=0.097241403 tclose_L1=0.405801403 operation=OCO travel=YES tcl_L2_1=-tcl_L2_1=0.0479 tcl_L2_2=0.05479 tcl_L2_2=0.04751 topen_L2=0.097321403 tclose_L2=0.405871403 tcl_L3_1=top_L3_1=0.04796 tc1_L3_2=0.0548 top_L3_2=0.04754 topen_L3=0.097381403 tclose_L3=0.405881403 TRAVEL_HIST_PEAKS=2.00000000000 TRAVEL_HIST_PEAK_1=-3.095040525064 TRAVEL_HIST_PEAK_2=-1.744245182652 CT=-2.28265625 CS=-2.2603125 CT_rel=0.601411812401866 cs_rel=0.617952993214722 U_MAX=-1.744245182652 U_MIN=-3.095040525064 tcl=0.05477 top=0.04789333333333333 Uod_1=242 Uod_2=242 Ucd_1=-Ucd_2=242 op_1=0 op_2=C0

Figure 32: Result.txt and Calc.txt

The left column show the results of result.txt in a formatted style. The right column shows the high precision results, not formatted, in calc.txt.

The pdf reports provide a graphical overview with the results in graphs and tables. The description of the different result values in calc.txt and result.txt is given in ANNEX B. The results in the word file have the same precision as the result.txt defines.

23

Test Results No-Load Operations

Test performed:	:	No-load operations							
Date of test:		13th Se	ptembe	r 2006					
Condition of tes	st object before test:	Factory	/ new.						
Gas pressure (a	abs.rel.to20 °C) :	-							
Test No.	CLT_1 NL	_T_CO		3					
Operating sequ	ence			O-0.3	s-CO	O-0.3	s-CO	0-0.3s-CO	
C-Operation	Voltage of closing	device	V	+	242				
	Closing time	L1	ms	ł	54.7				
		L2	ms	ł	54.8				
		L3	ms	-	54.8				
O-Operation	Voltage of opening	device	V	242	242				
	Opening time	L1	ms	47.8	47.5				
		L2	ms	47.9	47.5				
		L3	ms	48.0	47.5				

Legend:

Remarks:

Figure 33: No Load MS Word report from template

3.4 How to customize reports

One of the most popular features of the Saturn Studio II analysis suite is the capability to customize.

The pdf reports can be customized as well as the word files. Both work with templates to be modified by experienced users.

Please note!

Whenever changes are done to the template files make sure a working backup copy is stored to a secure destination.

The templates for reports and word files are stored in different folders.

3.4.1 NI DIAdem PDF report templates

The pdf report templates are loaded from C:\Saturn2\definitions\STL\...; the DIAdem report tool is needed to modify the pdf report templates. To learn how to modify the reports in detail refer to the DIAdem manual or online help.

To simply exchange the AMOtronics logo e.g. by your own logo or your customer's logo launch DIAdem, select the *REPORT* tab and open the report template. Double click the logo to edit the path for the embedded file. The file request window opens to select the new file from any folder.

24

Figure 34: DIAdem No Load report template

3.4.2 MS Word report templates

The word report templates are predefined and as standard loaded from C:\STL\Temp-Tab\EN_AMO\...). MS Word is needed to modify the word templates as it is also needed to use the automatic fill-in function. All grey shown table cells in the example will be filled automatically, if values are available. The rest of the document can be modified at will.

RECOMMENDATION!!!

It is recommended to keep the original templates in the original folder and use the custom folder for customizing the report templates.

Customizing the templates path settings is very simple. To do changes to the path configuration edit the definition file by selecting OPTIONS from the VIEW menu and point to the *STL-Doc Templates* button. The WINDOWS notepad application opens to edit the definition file for the templates paths.

2 VIEW 1:						
RESET FUL	LEGE	٧D	RANG			
	S F Se	eries Path ttings	STI Te la	Doc emp- ates		

Figure 35: View Menu - Options

Figure 36 shows the default path settings for the MS Word templates. The defaults are pre-defined and can be customized to any valid folder by simply exchanging the path definition.

Please note!

The path and document names may be changed do NOT change the keywords in this file.

[RESULT_DOC] LAT=C:\STL\Temp-Tab\EN_AMO\LAT.doc CLT=C:\STL\Temp-Tab\EN_AMO\CLT.doc TDT=C:\STL\Temp-Tab\EN_AMO\TDT.doc NLT=C:\STL\Temp-Tab\EN_AMO\NLT.doc SYT=C:\STL\Temp-Tab\EN_AMO\SYT.doc

Figure 36: STL_doc.ini - Standard

MS Word templates differ from values to be filled-in automatically and from the basic setup like headlines and further parameters. Exemplary the NLT standard template is shown in Figure 37.

Test·performed:¤ Date·of·test:¤ Condition·of·test· Gas·pressure· (ab	object∙before∙test:¤ s.∙rel.∙to•20.°C):¤	No-load <mark>21/04/2</mark> Factory -¤	d∙operat 010-18 ⁄∙new.¤	ions¤ <mark>48</mark> ¤						
Test·No.	→	°°°°°¤	α	000	ν°°α	000	α°°	000	Ω°°Ω	α
Operating-sequer	nce·¤		α	O-0.3	s-CO¤	O-0.3	s-CO¤	O-0.3	s-CO¤	α
C-Operation \rightarrow	Voltage of closing	•device¤	V¤	00000 ₀	00000 ₁₀	00000 ₀	00000 ₀ 0	°°°°°D	00000	α
	^ℤ Closing time [□]	L1¤	ms¤	00000 ₀	00000 ₀ 0	00000 ₀	00000 ₀ 0	°°°°°D	00000	α
¤	_	L2¤	ms¤	00000 <mark>0</mark>	00000	00000 ₀	00000	°°°°°D	°°°°°	α
α	_	L3¤	ms¤	00000 <mark>0</mark>	00000	00000 ₀	00000 <mark>0</mark>	°°°°°D	°°°°°0	Ø
O-Operation \rightarrow	Voltage•of•opening	•device¤	V¤	00000 <mark>0</mark>	00000	00000 <mark>0</mark>	00000	°°°°°D	00000	α
	COpening time	L1¤	ms¤	00000 <mark>0</mark>	00000	00000 ₀	00000	°°°°°D	°°°°°0	α
α		L2¤	ms¤	00000 ₀	00000	00000 ₀	00000 <mark>0</mark>	°°°°°	°°°°°D	α
¤		L3¤	ms¤	00000	00000	00000 ₀₀	00000	°°°°°D	00000	α
1 Legend:n -	8									p

Test-Results-No-Load Operations

Legend: -¤

Remarks:0 α

Figure 37: MS Word No Load report template

α

25

4 STL – Capacitive Load Test (CLT)

Circuit-breakers have to fulfill diverse requirements concerning interruption capabilities and dielectric strength. Typically a high switching duty and a distinctive dielectric strength are in the main focus of design, construction, and testing of circuit-breakers. This meets with the needs of short-circuit currents and overvoltage stress respectively. Additionally switching of capacitive loads i.e. capacitor banks, cable loads or overhead lines, represents a specific operating condition that requires extensive performance.

To determine the performance of a circuit breaker when a capacitive load is connected, one necessary test of a circuit breaker during the complete acceptance test procedure is the *Capacitive Load Test* also known as *Cable-Charging Current Switching Test*.

In generally two tests are possible: Open Test (O) and Close-Open-Test (CO)

The Saturn Studio II STL Analysis Suite provides fully automatic analysis routines which fulfill the requirements of the corresponding international standards. How to perform a typical CLT analysis is described in the following chapter.

4.1 Channel configuration

To perform a 3-phase Capacitive Load Test "CLT" with fully automatic analysis a set of 11 signals is measured. The current is measured on all 3 phases by use of a shunt. The phase and load voltage is measured; the ON-OFF signal which is the control signal for the circuit breaker and the travel signal is measured. The travel signal is a signal corresponding to the mechanical movement of the circuit breaker mechanics.

In the example some pressure channels (Druck) are measured for documentation purpose only but will not be used for analysis.

Automatic recognition of all channels for the CLT analysis is supported with the names constraints in Table 1.

💐 AVAILABLE CHANNELS 📃 🗖 ව					
CHANNEL	NAME	A 🔳			
 S1M1C1 	IL1				
 S1M1C2 	IL2				
 S1M1C3 	IL3				
 S1M1C4 	Druck	< DRS			
 S1M1C5 	ON_C	DFF			
 S1M1C6 	Trave	el			
 S1M1C7 	Curre	ent_ON_OFF			
 S1M1C8 	SPS D	DRS			
 51M2C1 	UL1				
 51M2C2 	UL2				
 51M2C3 	UL3				
 51M2C4 	Druck	< DRS 1			
 52M2C1 	U_Lo	ad_L1			
 S2M2C2 	U_Lo	ad_L2			
 S2M2C3 	U_Lo	ad_L3			
	7				
O INACTIV	/E	SORT BY			
ACTIVE		FUNCTION 🗸			
	TIC				
	anc -	ADD STIVINETIC			
		ADD FILE			

Figure 38: Available Channels – CLT

27

Standard names	Alternatively accepted names					
L1 L2 L3	IWL1 IWL2 IWL3					
UL1 UL2 UL3	US1 US2 US3					
U_Load_L1 U_Load_L2 U_Load_L3	U_LoadL1 U_LoadL2 U_LoadL3	ULastR ULastS ULastT	UWL1 UWL2 UWL3			
ON_OFF	On_Off	on_off	EIN_AUS	Ein_Aus	ein_aus	
TRAVEL	Travel	travel	WEGGEBER	Weggeber		

Table 1: CLT - Names constraints

4.1.1 Current channel configuration for IL1, IL2 & IL3

To automatically recognize the channels for the CLT the 3 current channels are named according to Table 1 for the 3 phases. The following values are recommendations only for typical 50Hz tests to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 80kS Physical factor: according to probes / dividers / shunts () Physical unit: A

4.1.2 Phase voltage channel configuration for UL1, UL2 & UL3

To automatically recognize the channels for the CLT the 3 phase voltage channels are named according to Table 1. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 80kS Physical factor: according to probes / dividers / shunts () Physical unit: V

4.1.3 Load voltage channel configuration for U_Load_L1, U_Load_L2 & U_Load_L3

To automatically recognize the channels for the CLT the 3 phase voltage channels are named according to Table 1. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 5MS/s Sample length: 4MS Physical factor: according to probes / dividers / shunts () Physical unit: V

4.1.4 ON-OFF channel configuration

The ON-OFF signal is the control signal for the circuit breaker. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 80kS

4.1.5 Travel channel configuration

The travel signal is corresponding to the mechanical movement (way) of the circuit breaker internal mechanics. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 80kS

4.1.6 Trigger configuration

Any trigger may be used to make sure the complete Capacitive Load Test sequence is acquired with a single shot. It might be applicable to define a pre-trigger and use the ON-OFF signal for trigger.

4.2 Display of Capacitive Load Test

The acquired data within the Capacitive Load Test can be displayed in single or multiple views. An example how to display is shown in Figure 39 to Figure 42. Any or no display is ok; the fully automatic analysis does not require any display.

Figure 39: CLT View display – voltage

29

Figure 40: CLT View display - current and voltage per phase

Figure 41: CLT View display – zoom to current and travel

30

Figure 42: CLT View display – currents, travel and pressure signals

4.3 Automatic Analysis of Capacitive Load Tests

After the acquisition of Capacitive Load Test signals is finished the project is stored and analysis can be started. Therefore point to the *ANALYSIS* button to open the analysis *MAIN MENU*. Select *Capacitive Load Test* from the menu or use the test sensitive *CLT* button (below button 11) and further select the analysis to run.

🥰 MAIN MENU 🛛 🛛 🔀		🥰 CAPACITIVE LOAD ANA 🔀
Capacitive Load Test	Í	Full analyze & report
No Load Test		
Making/Breaking Test		Operation Detection
Short-Time Current Test		CLT on IL1/2/3
Internal Arc Test		CLT on UL1/2/3
		SINGLE CLT on IL?
STL Test		SINGLE CLT on UL?
		Travel Analyze
		CLT TAB
MAIN MENU T		MAIN MENU T
,	\rightarrow	

For fully automatic analysis the first entry *Full analyze & report* is selected. If named corresponding to the above given conventions the channels automatically will be recognized for calculation.

To get highest precision results the mechanical parameters from a No Load Test need to be available. Therefore upfront a Capacitive Load Test series typically some No Load Tests are performed. For optimum analysis results the user can pick one of the available No Load Tests within the current series. No Load test results from other series alternatively can be selected. To specify the NLT the *SELECT NO LOAD TEST* window automatically opens to pick any available No Load Test from the list. Confirm selection with *OK*. For the fully automatic CLT analysis everything is complete and the analysis is started in the DIAdem report tool.

🦧 SELECT NO LOAD TEST 🛛 🛛 🔀
CAMPAIGN PATH
LC:\Saturn2 Demo Data\STL_DEMO\CLT\CLT_1 NLT_CO
CLT_1 NLT_CO - 3 - NLT_NLT_MAXIMAL
T
립 C:\Saturn2 Demo Data\STL_DEMO\CLT\CLT_1 NLT_CO\3

Figure 43: No Load Selection

4.4 Manual Analysis of Capacitive Load Tests

Each step of analysis for the CLT can be done separately by pointing to the individual entry of the CLT main menu (Figure 44). The analysis will run in DIAdem and generate the according report, which again will be stored in the project management. It can be selected from Operation Detection only (Figure 45), CLT on all 3 current phase (Figure 46, Figure 47) or voltage phases (Figure 48, Figure 49).

Single phase analysis is supported as well. To select pick one off *SINGLE CLT IL?* or *SINGLE CLT UL?* to either perform a single phase current or voltage analysis.

🦧 CAPACITIVE LOAD ANA 🔀
Full analyze & report
Operation Detection
CLT on IL1/2/3
CLT on UL1/2/3
SINGLE CLT on IL?
SINGLE CLT on UL?
Travel Analyze
CLT TAB
MAIN MENU

Figure 44: CLT main menu

For the current CLT analysis a selection window *SELECT ILx* comes up to request the current channel to be analyzed.

🚜 SELECT IL×				
CHANNEL	NAME			
💐 51M1C1	IL1			
💐 51M1C2	IL2			
💐 51M1C3	IL3			
💐 51M1C4	Druck DRS			
💐 51M1C5	ON_OFF			
💐 51M1C6	Travel			
💐 51M1C7	Current_ON_OFF			
💐 51M1C8	SPS DRS			
💐 51M2C1	UL1			
💐 51M2C2	UL2			
💐 51M2C3	UL3			
💐 51M2C4	Druck DRS 1			
💐 52M2C1	U_Load_L1			
Man comoco	Li losd 12			
CREATE NEW RESULT CHANNEL				

For the voltage CLT analysis a selection window *SELECT USx_ULx* comes up to request the voltage channel to be analyzed and next step a selection window *SELECT U_LoadLx_UWx* is displayed. After selection is finished the analysis starts and all parameters will be filled into the reports.

🥰 SELECT US×	_ULx 🛛 🛛
CHANNEL	NAME
💐 51M1C1	IL1
💐 51M1C2	IL2
💐 51M1C3	IL3
💐 51M1C4	Druck DRS
💐 51M1C5	ON_OFF
💐 51M1C6	Travel
💐 51M1C7	Current_ON_OFF
💐 51M1C8	SPS DRS
💐 51M2C1	UL1
💐 51M2C2	UL2
💐 51M2C3	UL3
💐 51M2C4	Druck DRS 1
💐 52M2C1	U_Load_L1
Man comoco	
CREATE	NEW RESULT CHANNEL

🥰 SELECT U_L	oadLx_UWx 🛛	×
CHANNEL	NAME	
💐 51M1C1	IL1	
💐 51M1C2	IL2	L
💐 51M1C3	IL3	L
💐 51M1C4	Druck DRS	L
💐 51M1C5	ON_OFF	
💐 51M1C6	Travel	
💐 51M1C7	Current_ON_OFF	
💐 51M1C8	SPS DRS	
💐 51M2C1	UL1	
💐 51M2C2	UL2	
💐 51M2C3	UL3	
💐 51M2C4	Druck DRS 1	
💐 52M2C1	U_Load_L1	-
Man comorto	UL and 12	1
CREATE	NEW RESULT CHANNEL	

Travel analyze allows separate analysis of travel signal and generates the according report. Selecting CLT TAB finally generated a MS Word report from the predefined template.

The analysis runs automatically with the above defined names constraints and calculates the parameters for all 3 phases on current and voltage. For each phase an overview report and a detailed report is generated containing the results in graphic und tabular form. The example shows a typical

32

33

close-open (CO) sequence with a "Cable Charging Current Switching Test". The figures Figure 45 to Figure 50 exemplary show the phase 1 results.

Figure 45: CLT - Operation Detection

Figure 46: CLT - Current L1 overview

34

Figure 48: CLT - Voltage L1 overview

Figure 49: CLT - Voltage L1 details

Figure 50: CLT - Travel CO

For test report and documentation purpose the calculated results automatically will be filled into a customizable MS Word template document (Figure 51). After generation the report is automatically stored to the project and manually can be edited, if wanted. All results will be stored in internal variables and in calc.txt and result.txt (compare 3.3 "How to analyze a test").

www.amotronics.de

35

36

Please note!

The functions are available only when Microsoft Word is installed on your system!!!

-

Test Results Cable-Charging Current Switching Tests

Test performed:Cable-charging current switeDate of test:21/04/2010 19 10Condition of test object before test:As after test No. 99999 / 15.Test arrangement:Direct test circuit, vacuum circuit, vacu

Cable-charging current switching tests, test duty CC2 21/04/2010 19:10 As after test No. 99999 / 15. Direct test circuit, vacuum circuit-breaker stand-alone Infeed via copper bars to the lower terminals of the circuitbreaker, upper contacts of the circuit-breaker connected to the capacitor banks via cable

Gas pressure (abs. rel. to 20 °C):

Test No.	CLT_1NLT	_C0		17					
Operating sequence				CO					
Applied voltage (rms)				37.2					
Making current (peak) L1		L1	A	661					
		L2	A	209					
		Ľ3	A	686	45	15	45	45	45
Closing angle	e (rel. to peak appl. volta	ge)	rei	≤15	≤15	≤15	≤15	≤15	≤15
Test voltage (ms)	L1	KV	21.6					
		12	KV KV	21.8					
Ave	rade value (phase to ph	250)	kV	37.6					
Breaking curr	ant	11		10 /					
Dreaking carry	on	12	Â	50.5					
		L3	A	50.2					
	Average v	alue	Α	50.0					
Recovery volt	age		_	_	_	_	_	_	_
Across circuit-breaker (peak) L1		L1	kV	56.4					
		L2	kV	72.9					
		L3	kV	56.5					
	Supply side (rms)	L1	kV	21.6					
		L2	kV	21.8					
		_L3	kV	21.6					
Average value (phase to phase)			kV	37.5					
C-Operation	Voltage of closing de	vice	V	242					
	Closing time		ms	55.0					
	Pre-arcing time	L1	ms	0.480					
		1.2	ms	0.200					
0-Operation	Voltage of opening de	LJ	V	242					
operation	Opening time	100	ms	47.6					
	Arcingtime	11	ms	1.12					
	, a cang arrie	Ľ2	ms	4.36					
		L3	ms	1.39					
Emission of flame/gas/oil, occurrence of NSDD		SDD	no	no	no	no	no	no	
Number of valid test			1	2	3	4	5	6	
Test result (P / N)				P	Р	P	P	P	P

Legend: P: Passed in terms of the applied standard N: Not passed in terms of the applied standard

Remarks: 99999/05 to 09:

Tests with reduced values.

Condition of test object after test: Test object not inspected.

Figure 51: CLT - MS Word result table

5 STL – Synthetic Test / Making Breaking Test (MBT)

A circuit breaker has two basic positions – open and closed. In the closed position the circuit breaker *makes* hole current. In the open position the circuit breaker *breaks* the hole current. In open position the voltage is on its maximum

The synthetic test is performed to determine the behavior of a circuit breaker when a high voltage condition follows a high current condition. Because it is not possible to have a generator which is capable of delivering both a high voltage and a high current simultaneously, the high voltage is generated in a separate circuit and the current of this circuit is injected into the breaker when the current delivering circuit is disconnected from the breaker

This STL-analysis package provides fully automatic analysis routines which fulfill the requirements of the corresponding European standard EN60427.

5.1 Channel configuration

To perform a 3-phase Synthetic Load Test or Making Breaking Test "MBT" with fully automatic analysis a set of 8 signals is measured. The current is measured on all 3 phases by use of a shunt. The phase voltage is measured; the ON-OFF signal which is the control signal for the circuit breaker and the travel signal is measured. The travel signal is a signal corresponding to the mechanical movement of the circuit breaker mechanics.

In the example some pressure channels (Druck) and safety signals are measured for documentation purpose only but will not be used for analysis.

Automatic recognition of all channels for the MBT analysis is supported with the names constraints in Table 2.

🚜 AVAILABLE (CHANNELS 📃 🗖 🔀
CHANNEL	NAME
 S1M1C1 	IWL1
 S1M1C2 	IWL2
 S1M1C3 	IWL3
 S1M1C4 	Druck DRS
 S1M1C5 	ON_OFF
 S1M1C6 	Travel
 S1M1C7 	Current_ON_OFF
 S1M2C1 	UWL1
 51M2C2 	UWL2
 51M2C3 	UWL3
 51M2C8 	Freigabe
● 52M1C1	IL1
 52M2C1 	UL1
 52M2C2 	UL2
 S2M2C3 	UL3
 S3M1C1 	IL2
● S4M1C1	IL3
	τ
📋 o INACTI	VE SORT BY
ACTIVE	
	ADD SHITHELLC
	ADD FILE

Figure 52: Available Channels – CLT

Latest changes: 16 March 2015 1:05 PM

38

Standard names	Alternatively accepted names						
IL1 IL2 IL3							
UL1 UL2 UL3	US1 US2 US3						
ON_OFF	On_Off	on_off	EIN_AUS	Ein_Aus	ein_aus		
TRAVEL	Travel	travel	WEGGEBER	Weggeber			

Table 2: MBT - Names constraints

5.1.1 Current channel configuration for IL1, IL2 & IL3

To automatically recognize the channels for the CLT the 3 current channels are named according to Table 2 for the 3 phases. The following values are recommendations only for typical 50Hz tests to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 1MS/s Sample length: 990kS Physical factor: according to probes / dividers / shunts () Physical unit: A

5.1.2 Phase voltage channel configuration for UL1, UL2 & UL3

To automatically recognize the channels for the CLT the 3 phase voltage channels are named according to Table 2. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 10MS/s Sample length: 9.9MS Physical factor: according to probes / dividers / shunts () Physical unit: V

5.1.3 ON-OFF channel configuration

The ON-OFF signal is the control signal for the circuit breaker. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 99kS

5.1.4 Travel channel configuration

The travel signal is corresponding to the mechanical movement (way) of the circuit breaker internal mechanics. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 99kS

5.1.5 Trigger configuration

Any trigger may be used to make sure the complete test sequence is acquired with a single shot. It might be applicable to define a pre-trigger and use the ON-OFF signal for trigger.

5.2 Display of Making Breaking Test

The acquired data within the Making Breaking Test can be displayed in single or multiple views. An example how to display is shown in Figure 53 to Figure 55. Any or no display is ok; the fully automatic analysis does not require any display.

Figure 53: MBT View display – overview

Figure 55: MBT View display – phase 1 current and voltage

5.3 Automatic Analysis of Making Breaking Tests

After the acquisition of Making Breaking Test signals is finished the project is stored and analysis can be started. Therefore point to the *ANALYSIS* button to open the analysis *MAIN MENU*. Select *Making/Breaking Test* from the menu or use the test sensitive *MBT* button (below button 11) and further select the analysis to run.

🥰 MAIN MENU	×	MAKING/BREAKING TEST	×
Capacitive Load Test		Full analyze	
No Load Test		Full analyze (no travel)	
Making/Breaking Test		Full analyze only travel!	
Short-Time Current Test		Full analyze + prospective	
Internal Arc Test		Full analyze + prosp. (no travel)	
		Full analyze + prosp. (only travel)	
STL Test		Single Phase analyze & report	
		MBT TAB	
MAIN MENU	T	MAIN MENU	T
<u> </u>	\rightarrow	J	

For fully automatic analysis the first entry *Full analyze & report* is selected. If named corresponding to the above given conventions the channels automatically will be recognized for calculation.

To get highest precision results the mechanical parameters from a No Load Test need to be available. Therefore upfront a Making Breaking Test series typically some No Load Tests are performed. For optimum analysis results the user can pick one of the available No Load Tests within the current series. No Load test results from other series alternatively can be selected. To specify the NLT the *SELECT NO LOAD TEST* window automatically opens to pick any available No Load Test from the list. Confirm selection with *OK*. For the fully automatic MBT analysis everything is complete and the analysis is started in the DIAdem report tool.

41

SELECT NO LOAD TEST	×
CAMPAIGN PATH	
C:\Saturn2 Demo Data\STL_DEMO\MBT\MBT_1_NLT_MBT	
MBT_1_NLT_MBT - 2 - NLT_NLT_RATED	
	-
	-
	Ψ.
8	
OK	

5.4 Manual Analysis of Making Breaking Tests

Special types of analysis for the MBT are available by pointing to the individual entry of the MBT main menu (Figure 57). Needed details will be requested automatically and the analysis then will run in DIAdem and generate the according report, which again will be stored in the project management. For analysis it can be selected from full MBT *without travel* or *travel only*.

Optionally prospective tests can be included in the MBT analysis for more precise results. Prospective tests are standard synthetic tests with reduced load to evaluate parameters not available on full load making breaking tests. The missing parameters automatically will be picked from the prospective test and a message informs the user about the automatic selection. Full analyze with prospective test again are available

with or without travel analysis and travel only analysis.

MAKING/BREAKING TEST	×
Full analyze	A
Full analyze (no travel)	
Full analyze only travel!	
Full analyze + prospective	
Full analyze + prosp. (no travel)	
Full analyze + prosp. (only travel)	
Single Phase analyze & report	
MBT TAB	
MAIN MENU	T
)	

Figure 57: MBT main menu

Finally single phase measurements are supported as well. To select pick *Single Phase analyze & report* to perform a single phase analysis.

All making breaking tests require a No Load test and will request to specify a test in the *SELECT NO LOAD TEST* window.

Figure 56: No Load Selection

43

🥰 SELECT NO LOAD TEST	×
CAMPAIGN PATH C:\Saturn2 Demo Data\STL_DEMO\MBT\MBT_1_NLT_MBT	Þ
MBT_1_NLT_MBT - 2 - NLT_NLT_RATED	
	T
OK CANCEL	

Figure 58: MBT – Select No Load Test

If analysis with prospective test is picked from the main menu the *SELECT PROSPECTIVE* window automatically comes up to select the synthetic test with reduced load.

SELECT PROSPECTIVE	
CAMPAIGN PATH C:\Saturn2 Demo Data\STL_DEMO\MBT\MBT_1_NLT_MBT	
MBT_1_NLT_MBT - 11 - SYT -	
립 C:\Saturn2 Demo Data\STL_DEMO\MBT\MBT_1_NLT_MBT\10	

Figure 59: MBT - Select Prospective Test

44

For the single channel MBT analysis a selection window *SELECT IL*? comes up to request the current channel, next step a selection window *SELECT UL*? comes up to request the voltage channel to be analyzed. After selection is finished the analysis starts and all parameters will be filled into the reports.

🚜 SELECT IL?	
CHANNEL	NAME
💐 51M1C1	IWL1
💐 51M1C2	IWL2
💐 51M1C3	IWL3
💐 51M1C4	Druck DRS
💐 51M1C5	ON_OFF
💐 51M1C6	Travel
💐 51M1C7	Current_ON_OFF
💐 51M2C1	UWL1
💐 51M2C2	UWL2
💐 51M2C3	UWL3
💐 51M2C8	Freigabe
💐 52M1C1	IL1
💐 52M2C1	UL1
Sen comoro	111.2
CREATE	NEW RESULT CHANNEL

SELECT UL?	X
CHANNEL	NAME
💐 51M1C1	IWL1
💐 51M1C2	IWL2
💐 51M1C3	IWL3
💐 S1M1C4	Druck DRS
💐 S1M1C5	ON_OFF
💐 S1M1C6	Travel
💐 S1M1C7	Current_ON_OFF
💐 51M2C1	UWL1
💐 51M2C2	UWL2
💐 51M2C3	UWL3
💐 51M2C8	Freigabe
💐 52M1C1	IL1
💐 S2M2C1	UL1
Men comoco	111.2
CREATE	NEW RESULT CHANNEL

Selecting MBT TAB finally generates a MS Word report from the predefined template.

The analysis runs automatically with the above defined names constraints and calculates the parameters for all 3 phases on current and voltage. For each phase an overview report and a detailed report is generated containing the results in graphic und tabular form. The example shows a typical open (O) test. The figures Figure 60 to Figure 67 exemplary show the phase 1 results.

Figure 61: MBT - Current L1 overview

Figure 63: MBT - Voltage L1 overview

Figure 65: MBT - TRV detect

48

Figure 67: MBT - Travel O

For test report and documentation purpose the calculated results automatically will be filled into a customizable MS Word template document (Figure 68). After generation the report is automatically stored to the project and manually can be edited, if wanted. All results will be stored in internal variables and in calc.txt and result.txt (compare 3.3 "How to analyze a test").

49

Please note!

The functions are available only when Microsoft Word is installed on your system!!!

Date 2010-05-05 Time 22:03:17

Making and breaking Test				
Test No. MBT_1_NLT_MBT				
10				
0				

	Applied voltage [kV]	Making Current [kA]	Breaking Gurrent [kA _{sos}]	Recovery voltage [kV]	Current loop (peak) [kA]	Gurrent loop [ms]	Arsing Time [ms]	Component [%]
		•	16.4	5.85			7.93	51.2
12		-	17.1	5.82			7.89	-22.9
L3		•	17.0	5.68			3.07	-24.3
Axerage value			16.9	10.0				
Duration Cur	rrent [ms]			86	5.8			
IRV Ug	[kV]			18	3.5			
lime t _a	[µs]			58	3.9			
lime de	lay t₄			6.	96			
Voltage of closu	ng device [V]							
Voltage of open	Voltage of opening device [V] 110							
Closing	time				-			
Opening	time	45.9						
Break tim	e [ms]			53	3.8			

	Applied voltage [kVm]	Making Current [kA]	Breaking Current [kA _{sok}]	Hecovery voltage [kV]	Gurrent loop (peak) [kA]	Current loop [ms]	Arsing Time [ms]	Component
- 11								
L2								
L3								
Axerage value								
Duration Cur	rrent Imsl							
IRV Uc	IKVI			-				
lime t _a	[ha]							
lime de	lay t₄							
Voltage of closif	ng device [V]			_				
Closing	time							
Opening	time							
Break tim	e [ms]							

Figure 68: MBT - MS Word result table

50

5.5 Separate TRV Analysis

The TRV analysis (Transient Recovery Voltage) based on STL recommendations is part of the MBT analysis (chapter 5: STL – Synthetic Test / Making Breaking Test (MBT)). Additionally it is available as a separate package.

Automatic recognition of all channels for the TRV analysis is supported with the names constraints in Table 3.

Standard names	Alternatively accepted names				
UL1	US1	U1			
UL2	US2	U2			
UL3	US3	U3			

Table 3: Separate TRV - Names constraints

5.5.1 Manual analysis

TRV Analysis can be run manually on single or multiple phases; results will be stored in the project report folder. The calculated results will be stored in ASCII readable files, a graphic report is generated as pdf report (compare Figure 65: MBT - TRV detect and Figure 66: MBT - TRV analysis results).

Figure 69: Manual TRV controls

To run the TRV analysis manually a set of functional buttons is available in the view menu in the *STL BASIC* tab. For the following functions an active cursor has to be available in the view. To activate a cursor point to the little number above the cursor; for further details refer to the detailed manual.

The four left buttons can be used to move the active cursor to a certain position. The first button analyzes the active signal and moves the active cursor right to the START of TRV position. The second button moves the active cursor to the END position.

The third button moves the cursor to the next right TRV START position of the same signal, button four moves it to the next END position

The four right buttons start specific analysis and report sequences. The first button of the right block (button no. 5) calculates the TRV parameters at the current position of the active cursor and generates a pdf report and ASCII result file.

Button no. 6 works same way but analyzes all TRV positions in the signal. It does not rely on the active cursors position.

Button no. 7 generates a MS Word report from a template file (compare 5.5.3: MS Word report)

www.amotronics.de

The most right button of this menu (button no. 8) performs all steps described in this chapter automatically step by step. It uses the active cursor position and calculates the TRV parameters for up to 3 phases (if named according to channel naming conventions for TRV, compare Table 3: Separate TRV - Names constraints). PDF reports are generated per phase and ASCII readable result files are stored in the project report folder. Last step a MS Word report is generated from a template file as button no. 7 does separately (compare 5.5.3: MS Word report)

5.5.2 Analysis Result List

Each step of the manually initiated TRV analysis sends a state to the *Result List* window which automatically displays. The name of the function, the analyzed signal name and the result parameter is given. A full set of result parameters is shown after a TRV analysis is done.

🛿 🗖 🖾				×	
SIGNAL	NAME	VALUE	FROM [s]	TO [s]	
	TRV Uc	10.344kV			
UL2	TRV START	141.061ms			
	TRV TD	8.317us			
	TRV tO	141.055ms			
	TRV t2	141.106ms			
	TRV t3	141.116ms			
	TRV UCTC	-177.240V/us			
	TRV UC	-10.814kV			
UL3	TRV START	136.205ms			
	TRV TD	6.961us			
	TRV tO	136.201ms			
	TRV t2	136.250ms			
	TRV t3	136.260ms			
	TRV UCTC	-313.658V/us			1
	TRV Uc	-18.487kV			
UL1	SINUS START	141.061m			
UL1	SINUS END	470.843m			
					7
COPY TO CLIPBOARD EXCEL	DIADEM SAVE LOA	DELETE UNSEL	CLEAR		

5.5.3 MS Word report

The optional MS Word report can be generated from an adjustable template. By use of above described buttons the generation can be initiated. A 3-phase example report is available in shown in Figure 70: TRV - MS Word Report.

TEST NUMBER:				
Operation				
Phase		Α	В	С
First reference voltage u_1	kV			
Time t ₁	цs			
TRV peak value 🚛	kV	10.3	-10.8	-18.5
Time t ₂ or t ₃	ц <u>я</u>	58.2	61.0	58.9
Time delay t _d	ц <u>я</u>	6.97121	8.31681	6.96051
Voltage u'	kV	10.3	-10.8	-18.6
Time t'	ЦS	67.7	68.6	68.2

Figure 70: TRV - MS Word Report

6 STL – No-Load Test (NLT)

High power circuit breakers differ from mechanical specification and individual construction. Therefore each breaker type has specific characteristics. The No-Load test evaluates these typical characteristics and defines values; the No-Load test is a pre-test for other tests as e.g. Making-Breaking / Capacitive Load. No-Load tests use low-voltage electrical signals to accurately detect the contacts separation time. A percentage level is automatically detected during No-Load analysis to define the separation time within the mechanical travel signal. Several No-Load tests can be stored in a measurement campaign/series and are available for selection as a reference for analysis of following tests. No-Load tests are calculated on all 3 phases to check the symmetric timing of all phase breakers. One phase result is picked as a reference.

The No-Load test analysis supports open-close (OC), close-open (CO), open-close-open (OCO) and close-open-close (COC) test sequences.

6.1 Channel configuration

To perform a 3-phase No-Load test with fully automatic analysis a set of 5 signals is measured. The current is measured on all 3 phases by use of a shunt. The ON-OFF signal which is the control signal for the circuit breaker and the Travel signal is measured. The travel signal is a signal corresponding to the mechanical movement of the circuit breaker mechanics.

Automatic recognition of all channels for the No-Load analysis is supported with the names constraints given in Table 4.

💐 AVAILABLE CHANNELS 💦 🔲 🔲				
CHANNEL	NAME			
 S1M1C1 	L1			
 S1M1C2 	L2			
 S1M1C3 	L3			
 \$1M1C5 	ON_OFF			
● S1M1C6	Travel			
• S1M1C7	Current_ON_OFF			
		_		
L		_		
L				
L				
		T		
🛛 o INACTI	/E SOR1	BY		
	FUNCTI	ON 🗸		
		THETIC		
	ADD SYN	Interic		
	ADD	FILE		

Figure 71: Available Channels – NLT

54

Standard names	Alternatively accepted names						
L1 L2 L3	IWL1 IWL2 IWL3	IWL1 IWL2 IWL3					
ON_OFF	On_Off	on_off	EIN_AUS	Ein_Aus	ein_aus		
TRAVEL	Travel	travel	WEGGEBER	Weggeber			

Table 4: NLT - Names constraints

6.1.1 Current channel configuration for L1, L2 & L3

To automatically recognize the channels for the No-Load test the 3 phase current channels are named according to Table 4. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 100kS Physical factor: according to probes / dividers / shunts ()

6.1.2 ON-OFF channel configuration

The ON-OFF signal is the control signal for the circuit breaker. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 100kS

6.1.3 Travel channel configuration

The travel signal is corresponding to the mechanical movement (way) of the circuit breaker internal mechanics. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 100kS/s Sample length: 100kS

6.1.4 Trigger configuration

Any trigger may be used to make sure the complete No-Load test sequence is acquired with a single shot. It might be applicable to define a pre-trigger and use the ON-OFF signal for trigger.

6.2 Display of No-Load test

The acquired data within the No-Load test can be displayed in a view. An example how to display is shown in Figure 72. Any or no display is ok; the fully automatic analysis does not require any display or manual cursor definitions. The displayed cursors show the results of the OCO sequence already.

Figure 72: No-Load test overview

6.3 Analysis of No-Load tests

After the acquisition of No-Load test signals is finished the project is stored and analysis can be started. Therefore point to the *ANALYSIS* button to open the analysis *MAIN MENU*. Select *No Load Test* from the menu or by use of the case activated *NLT* button and further select the analysis to run.

💐 MAIN MENU	\mathbf{X}		🥰 NO LOAD ANALYZE 💦 💈 💈	K
Capacitive Load Test			Full Automatic (with Travel)	K,
No Load Test			Full Automatic (no valid Travel)	
Making/Breaking Test				
Short-Time Current Test			Manual select	
Internal Arc Test				
STL Test				
MAIN MENU	T		MAIN MENU	e l
P		\rightarrow		-

In case a valid Travel signal is not available for analysis *Full Automatic (no valid Travel)* is selected. The L1, L2, L3 and ON-OFF signal will be used for calculation then. Due to missing mechanical feedback from the breaker the result will be less accurate without Travel signal.

Finally it can be manually specified which type of analysis to run. Therefore select *Manual select* from the above menu to open the lower *NO LOAD ANALYZE* menu.

no load analyze	×
Full OCO	
Full OC	_
Full O	
Full CO Full C	
OCO on L?	
OC on L?	
O on L?	
CO on L?	
C on L?	
MAIN MENU	T

Any typical kind of test can be picked from the list to define the type of test. The top 5 selections starting with "Full" do not require further input if channel naming is valid. Selecting one of the lower 5 entries the ON-OFF signal and the phase is specified manually. Any channel name can be setup in the project when specified by user. The software automatically requests the missing information to be given.

SELECT O	N OFF		SELECT L	x	
CHANNEL	NAME		CHANNEL	NAME	
💐 51M1C1	L1		💐 51M1C1	L1	
S1M1C2	L2		💐 51M1C2	L2	
💐 51M1C3	L3		💐 51M1C3	L3	
💐 51M1C5	ON_OFF		💐 S1M1C5	ON_OFF	
💐 51M1C6	Travel		💐 S1M1C6	Travel	
💐 51M1C7	Current_ON_OFF		💐 51M1C7	Current_ON_OFF	
		T			
CREA	TE NEW RESULT CHANNEL		CREA	ATE NEW RESULT CHANNE	L
			>.		

The analysis runs automatically with the above defined names constraints and calculates the opening and closing time for all 3 phases. For each phase a report sheet is generated containing the timing results. The example shows a typical open-close-open (OCO) sequence. (Compare Figure 73 to Figure 76)

Figure 73: No Load Test - L1 OCO

Figure 74: No Load Test - L2 OCO

Figure 75: No Load Test - L3 OCO

Figure 76: No Load Test - OC level definition (L2 OCO)

59

For test report and documentation purpose the calculated results automatically will be filled into a customizable MS Word template document (Figure 77). After generation the report is automatically stored to the project and manually can be edited, if wanted. For further use of the No-Load results as a reference the calculated values are stored in internal variables.

Test Results

Please note!

The functions are available only when Microsoft Word is installed on your system!!!

No-Load Operations Test performed: No-load operations Date of test: 19th January 2010 Condition of test object before test: Factory new. Gas pressure (abs. rel. to 20 °C): 3 Test No. CLT_1NLT_CO 0-0.3s-CO O-0.3s-CO O-0.3s-CO Operating sequence -242 v Voltage of closing device C-Operation -54.8 Closing time L1ms -55.0 L2 ms -55.0 L3 ms 242 Voltage of opening device v 242 O-Operation 47.7 47.4 Opening time L1ms 47.8 47.4 L2ms 47.9 47.4 L3 ms

Legend:

Remarks:

Figure 77: NLT - MS Word result table

No-Load tests should be repeated for each type of circuit breaker to evaluate the mechanical parameters.

7 STL – Short Time Current Test (STC)

The short-time current rating of a circuit breaker relates to the performance of the circuit breaker over a specific current range for a period of time. It defines the ability of the breaker to remain closed for a time interval under high fault conditions. It is specified by both current magnitude and time magnitude. The short-time rating is used by the engineer to determine the ability of the circuit breaker to protect itself and other devices.

7.1 Channel configuration

To perform a 3-phase Short Time Current Test with fully automatic analysis a set of 3 signals is measured. The current is measured on all 3 phases by use of a shunt.

For documentation purpose the voltages and pressures etc. can be measured as well.

Automatic recognition of all channels for the STC analysis is supported with the names constraints defined in Table 5.

🚜 AVAILABLE (HANNELS			
CHANNEL	NAME			
 S1M1C1 	IL1			
 S1M1C2 	IL2			
 S1M1C3 	IL3			
 S1M1C4 	Druck DRS			
 S1M1C7 	SPS DRS			
 \$1M2C1 	UL1			
 51M2C2 	UL2			
 51M2C3 	UL3			
 \$1M2C4 	Druck DRS			
		T		
	1			
O INACTIV	/E SO	RTBY		
ACTIVE	FUNC			
	TIC ADD S	SYNTHETIC		
	AL			

Figure 78: Available Channels – STC

Standard names	Alternatively accepted names				
IL1 IL2					
IL3					

Table 5: STC - Names constraints

7.1.1 Channel configuration for IL1, IL2, IL3

To automatically recognize the channels for the STC Test the 3 phase current channels are named according to Table 5. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 1MS/s Sample length: 400kS Physical factor: according to probes / dividers / shunts () Physical unit: A

7.1.2 Trigger configuration

Any trigger may be used to make sure the complete sequence is acquired with a single shot. It might be applicable to define a pre-trigger and / or use separate trigger signals.

7.2 Display of Short Time Current Test (STC)

The acquired data within the Short Time Current Test can be displayed in single or multiple views. An example how to display is shown in Figure 79 to Figure 80. Any or no display is ok; the fully automatic analysis does not require any display.

Figure 79: STC - View display

62

Figure 80: STC - View display

7.3 Automatic Analysis of Short Time Current Tests

After the acquisition of Short Time Current Test signals is finished the project is stored and analysis can be started. Therefore point to the *ANALYSIS* button to open the analysis *MAIN MENU*. Select *Short Time Current Test* from the menu or use the test sensitive *STC* button (below button 11) and further select the analysis to run.

🥰 MAIN MENU	×	🥰 Short-Time Current	×
Capacitive Load Test	*	Full analyze & report	
No Load Test			
Making/Breaking Test		STC on IL1/2/3	
Short-Time Current Test		SINGLE STC on L?	
Internal Arc Test			
STL Test			
		STC TAB	
MAIN MENU	T	MAIN MENU	T
<u></u>	─ →	J	

For fully automatic analysis the first entry *Full analyze & report* is selected. If named corresponding to the above given conventions the channels automatically will be recognized for calculation.

7.4 Manual Analysis of Short Time Current Tests

Partial analysis for the STC can be done separately by pointing to the individual entries of the main menu (Figure 81). The analysis will run in DIAdem and generate the according report, which again will be stored in the project management. It can be selected from STC Test on all 3 current phases or on single phase.

To select pick one off *STC on IL1/2/3* or *SINGLE STC on L*? to either perform a 3 phase or single phase current analysis.

For the single phase STC analysis a selection window *SELECT ILx* comes up to request the current channel to be analyzed.

🥰 Short-Time Current 💦 🛛 🔀
Full analyze & report
STC on IL1/2/3
SINGLE STC on L?
STC TAB
MAIN MENU T

Figure 81: STC - Main menu

🥰 SELECT ILx	
CHANNEL	NAME
💐 51M1C1	IL1
💐 51M1C2	IL2
💐 51M1C3	IL3
💐 51M1C4	Druck DRS
💐 51M1C7	SPS DRS
💐 51M2C1	UL1
💐 51M2C2	UL2
💐 51M2C3	UL3
💐 51M2C4	Druck DRS
CALC	IL1_SMOOTH
CALC	IL2_SMOOTH
CALC	IL3_SMOOTH
CALC	IL1_FFT
CREATE	NEW RESULT CHANNEL

Selecting STC TAB finally generates a MS Word report from the predefined template.

The analysis runs automatically with the above defined names constraints and calculates the parameters for all 3 phases. For each phase an overview report and a detailed report is generated containing the results in graphic und tabular form. The example shows a typical test. The figures Figure 82 and Figure 83 exemplary show the phase 1 results.

Figure 82: STC - Current L1 overview

Figure 83: STC - Current L1 details

For test report and documentation purpose the calculated results automatically will be filled into a customizable MS Word template document (Figure 84). After generation the report is automatically stored to the project and manually can be edited, if wanted. All results will be stored in internal variables and in calc.txt and result.txt (compare 3.3 "How to analyze a test").

www.amotronics.de

65

Please note!

The functions are available only when Microsoft Word is installed on your system!!!

Test Results Short-Time Withstand Current and Peak Withstand Current Tests

Testperformed:	Short-time withstand current and peak withstand current tests
Date of test:	05/05/2010 21:11
Condition of test object before test:	Factory new.
Testarrangement:	Direct test circuit, vacuum circuit-breaker in metal-enclosed, air-
	insulated switchgear.
Connections to test object:	Infeed via copper bars to the busbars of the metal-enclosed, air-
	insulated switchgear. Short-circuited at the cable-terminals of the
	switchgear via copper bar, short-circuit point and switchgear
	earthed via cable.

Gas pressure (abs. rel. to 20 °C):

Test No.	S	TC_1_NLT	r_stc	3					
Peak withstand cu	irrent	L1	kA	14.1					
		L2	kA	11.9					
		L3	kA	12.8					
Short-circuit currer	nt First cycle	e L1	kA	5.94					
		L2	kA	6.75					
		L3	kA	6.25					
	Last cycle	e L1	kA	5.49					
		L2	kA	6.37					
		L3	kA	5.78					
	Equivalent current	L1	kA	5.56					
		L2	kA	6.39					
		L3	kA	5.84					
	Avera	ge value	kA	5.93					
Duration of short-circuit		s	0.3100						
Short-time withsta	nd current	L1	kA	tbd					
		L2	kA	tbd					
		L3	kA	tbd					
	Avera	ge value	kA	0.000					
Related to rated duration of short-circuit		s	tbd						
Duration of short-o	sircuit		5	0.0000					
Related to rate	d short-time withstan	d current	kA	0.000					
Emission of flame	/gas/oil			no	no	no	-	-	-
Test result (P/N)				P	Р	P	-	-	-
Resistance of the	e main circuit								
	Before test	L1	μΩ				-	-	-
		L2	μΩ				-	-	-
.		L3	μΩ				-	-	-
	Aftertest	L1	μΩ				-	-	-
		L2	μΩ				-	-	-
		L3	μΩ				-	-	-

Legend:

P: Passed in terms of the applied standard N: Not passed in terms of the applied standard

99999/02:

99999 / 03 and 04:

Remarks: 99999/01: Current calibration No-load operation Tests with reduced values

Condition of test object after test: No visible or functional change or damage. The change of the resistance values are within the limits of the applied test specifications.

Figure 84: STC - MS Word result table

8 STL – Lightning Arc Test / Internal Arc Test (LAT / IAT)

Internal arc tests are intended to verify the effectiveness of a switchgear design in protecting personnel in case of an internal arc. Internal faults inside metal-enclosed switchgear can occur in a number of locations and can cause various physical phenomena. The arc energy resulting from an arc in any insulating medium within the enclosure will cause an internal overpressure and local overheating which will result in mechanical and thermal stressing of the equipment.

With the IEC 62271-200 new methods and criteria for testing metal/insulation enclosed switchgear under conditions of an internal arc have been defined.

The STL-analysis package fulfills the criteria of the above mentioned standard. The workflow of a typical analysis is described on an exemplary measurement project.

8.1 Channel configuration

To perform a 3-phase Internal Arc Test with fully automatic analysis a set of 3 signals is measured. The current is measured on all 3 phases by use of a shunt.

For documentation purpose the voltages can be measured as well.

Automatic recognition of all channels for the IAT / LAT analysis is supported with the names constraints defined in Table 6.

🚜 AVAILABLE (CHANNELS
CHANNEL	NAME 🔳 🔺
● S1M1C1	IWL1
 S1M1C2 	IWL2
 S1M1C3 	IWL3
 S1M1C4 	Druck DRS
 S1M2C1 	UWL1
 \$1M2C2 	UWL2
 \$1M2C3 	UWL3
 S1M2C4 	Druck DRS
● S2M1C1	IL1
 S2M2C1 	UL1
 S2M2C2 	UL2
 52M2C3 	UL3
 S3M1C1 	IL2
● S4M1C1	IL3
	T
📋 o INACTI	VE SORT BY
	FUNCTION 💎
	ADD SYNTHETIC
	ADD FILE

Figure 85: Available Channels – LAT / IAT

67

Alternatively accepted names				

Table 6: IAT / LAT - Names constraints

8.1.1 Channel configuration for IL1, IL2, IL3

To automatically recognize the channels for the IAT the 3 phase current channels are named according to Table 6. The following values are recommendations only to allow precise results, yet limiting the needed storage to a minimum.

Sample rate: 1MS/s Sample length: 1.2MS Physical factor: according to probes / dividers / shunts () Physical unit: A

8.1.2 Trigger configuration

Any trigger may be used to make sure the complete IAT sequence is acquired with a single shot. It might be applicable to define a pre-trigger and / or use separate trigger signals.

8.2 Display of Internal Arc Test (IAT / LAT)

The acquired data within the Internal Arc Test can be displayed in single or multiple views. An example how to display is shown in Figure 86 to Figure 87. Any or no display is ok; the fully automatic analysis does not require any display.

Figure 86: LAT View display

68

Figure 87: LAT View display

8.3 Automatic Analysis of Internal Arc Tests

After the acquisition of Lightning Arc Test signals is finished the project is stored and analysis can be started. Therefore point to the *ANALYSIS* button to open the analysis *MAIN MENU*. Select *Internal Arc Test* from the menu or use the test sensitive *LAT* button (below button 11) and further select the analysis to run.

🥰 MAIN MENU	×	🥰 INTERNAL ARC ANALYZE 🛛
Capacitive Load Test	*	Full analyze & report 🛛 🔹
No Load Test		
Making/Breaking Test		IAT on IL1/2/3
Short-Time Current Test		SINGLE IAT on IL?
Internal Arc Test		
		3
STL Test		
		IAT TAB
MAIN MENU	Ψ.	MAIN MENU
<u>}</u>	\rightarrow)

For fully automatic analysis the first entry *Full analyze & report* is selected. If named corresponding to the above given conventions the channels automatically will be recognized for calculation.

8.4 Manual Analysis of Internal Arc Tests

www.amotronics.de

Partial analysis for the IAT / LAT can be done separately by pointing to the individual entry of the main menu (Figure 88). The analysis will run in DIAdem and generate the according report, which again will be stored in the project management. It can be selected from IAT / LAT on all 3 current phases or on single phase.

To select pick one off *IAT on IL1/2/3* or *SINGLE IAT on IL?* to either perform a 3 phase or single phase current analysis.

For the single phase IAT analysis a selection window **SELECT ILx** comes up to request the current channel to be analyzed.

nternal arc analyze	×
Full analyze & report	A
IAT on IL1/2/3	
SINGLE IAT on IL?	
MAIN MENU	T

Figure 88: IAT / LAT main menu

🚜 SELECT IL×				
CHANNEL	NAME	r		
💐 51M1C1	IWL1			
💐 51M1C2	IWL2			
💐 51M1C3	IWL3			
💐 51M1C4	Druck DRS			
💐 51M2C1	UWL1			
💐 51M2C2	UWL2			
💐 51M2C3	UWL3			
💐 51M2C4	Druck DRS			
💐 52M1C1	IL1			
💐 52M2C1	UL1			
💐 52M2C2	UL2			
💐 52M2C3	UL3			
💐 53M1C1	IL2			
Men CAMICI	110			
CREATE NEW RESULT CHANNEL				

Selecting IAT TAB finally generates a MS Word report from the predefined template.

The analysis runs automatically with the above defined names constraints and calculates the parameters for all 3 phases. For each phase an overview report and a detailed report is generated containing the results in graphic und tabular form. The example shows a typical test. The figures Figure 89 to Figure 90 exemplary show the phase 1 results.

Figure 90: IAT / LAT - Current L1 details

For test report and documentation purpose the calculated results automatically will be filled into a customizable MS Word template document (Figure 91). After generation the report is automatically stored to the project and manually can be edited, if wanted. All results will be stored in internal variables and in calc.txt and result.txt (compare 3.3 "How to analyze a test").

71

Please note!

The functions are available only when Microsoft Word is installed on your system!!!

Testing under Conditions of Arcing due to an Internal Fault

Test performed:	Internal arcing test
Date of test:	05/05/2010 19:42
Condition of test object:	Factory new.
Test arrangement:	See sheet 3
Connections to test object:	Infeed three-phase via <mark>cables</mark> to the <mark>cable terminals</mark> of the <mark>right- hand side</mark> infeed panel.
Arc initiation:	Three-phase by means of a copper wire Ø 0.5 mm across the busbars connecting the circuit-breaker to the cable compartment bushings in the circuit-breaker compartment.

Test No.: IAT_1 - 1		Applied voltage (phase to phase): kV		Test frequency:	Test duration:
				50.0 Hz	0.977 s
			AC com	ponent	
	Peak current	During the first three half-cycles		At the end of the test	Integral
	kA	kA		kA	kA
L1	10.5	3.85		4.07	3.79
L2	8.59	4.10		4.29	3.97
L3	7.93	4.02		4.24	3.90
Average				Average value	3.88
Equivalent short-circuit duration 0.379 s related t			related to a s	hort-circuit current of	10.0 kA.

Remarks:

Test results: The test object passed the test performed in accordance with the applied test specifications.

Achieved class of the circuit-breaker compartment: IAC AFL 25kA 1s

Figure 91: IAT / LAT - MS Word result table

9 STL Test

The STL Test procedure is available for single phase analysis. From a single signal the sinus part is detected and analyzed. The valid range is shown as a blue curve in Figure 93. The parameters to be evaluated are 3crestRMS, frequency and min / max values per period.

The STL-analysis package fulfills the criteria of IEC 62271-200 standard.

9.1 Single current analysis

Single analysis for the can be started manually by pointing to the *STL Test* entry in the main analysis menu and select *Single current analyze* from the *STL Test* menu. The analysis will run in DIAdem and generate the according report, which again will be stored in the project management.

🥰 MAIN MENU 🛛 🛛 🔀		💐 STL Test	×
Capacitive Load Test		Single current analyze	
No Load Test			
Making/Breaking Test			
Short-Time Current Test			
Internal Arc Test			
STL Test			
MAIN MENU		MAIN MENU	T
<u>}</u>	\rightarrow)	

For the single phase analysis a selection window *SELECT ILx* comes up to request the current channel to be analyzed.

🚜 SELECT IL×					
CHANNEL	NAME				
💐 51M1C1	IL1				
💐 51M1C2	IL2				
💐 51M1C3	IL3				
💐 51M1C4	Druck DRS				
💐 51M1C5	ON_OFF				
💐 51M1C6	Travel				
💐 51M1C7	Current_ON_OFF				
💐 51M1C8	SPS DRS				
💐 51M2C1	UL1				
💐 51M2C2	UL2				
💐 51M2C3	UL3				
💐 51M2C4	Druck DRS 1				
S2M2C1 U_Load_L1					
Sen comoco	UL losd 12				
CREATE NEW RESULT CHANNEL					

Figure 92: STL Test - Select current channel

Figure 93: STL Test - Current L2 overview

Figure 94: STL Test - Current L2 details

Multiple phases can be analyzed one after the other. Each run generates an individual report.

74

Analysis of phase IL1 additionally generates a new summarizing report collecting all individual reports of following analysis results until next phase IL1 analysis is done; further phases automatically will be appended to the summarizing report. The next IL1 analysis initializes a new summarizing report.

75

10 Troubleshooting

In case of trouble with the analysis packages please contact the AMOtronics support team.

11 Please remember

The MS Word functions for table generation are available only when Microsoft Word is installed on your system!!!

First time DIAdem is used the system will need some time to start DIAdem. If DIAdem already runs the analysis can start right away.

Report templates can be adjusted to customer needs. Logos or any other detail can be defined per customer. Compare chapter 3.4 on page 23

76

12 Certificate of conformity

77

13 Contact

Products of AMOtronics' Saturn transient recorder family are distributed all over the world. Please contact the following address for your inquiries:

Roermonder Str. 594 52072 Aachen GERMANY

www.amotronics.de

info@amotronics.de

Tel: +49 241 169780 18 Fax: +49 241 169780 55

Axilane Instruments SARL

81 rue des Joncs Marins, 91620 La Ville du Bois www.axilane.com - info@axilane.com Tél : +33.(0).950.60.40.20 - Fax : 09.50.60.40.20 N° 478891641 RCS EVRY

ANNEX A Path generator definition file

Customizing the path generator settings is very simple. To do changes to the entries in the path generator window edit the file by selecting *OPTIONS* from the *VIEW* menu and point to the *STL-New Campgn. Settings* button. The WINDOWS notepad application opens to edit the setup file for the path generator window.

az view 1:			
RESET FUL	LEGEND RANG		
OPTIONS STL-New STL-Doc Campgn. Settings lates			

Figure 95: View Menu - Options

Not only the selection entries itself can be changed, but also the structure of the path can be changed with very little changes to the setup file. The below file defines the source for the generator window in Figure 96.

PLEASE CONFIGURE NEW CAMP	AIGN	×
Modify entries in VIEW-OPTI	ONS MENU	AMO tronics
Testing Department	Own products	A I
Type of testobject	Power Switch	A
Typical Voltage	less than 10 / 12 kV	0
Short current	80 kA	8
Typical Current	4000 A and more	9
Type of test	mechanical test at complete system	A
)		
)		
PROJECT ROOT PATH		
ፄ \\Saturn-01\Saturn_Data\		
ENERATED PROJECT PATH		
\\Saturn-01\Saturn Data\IA 089 A 001		
ОК	CAN	CEL

Figure 96: New series path generator window

The following example explains the simple structure for the path generation source file. We recommend storing a backup file before starting to change this file.

The cursive black writing is file contents, the green writing are comments only to explain. Comments are not allowed inside the definition file.

Please note!

Only writing in "..." may be changed. Values in "#...#" implement special automatic inserts All writing outside "..." are keywords which may not be changed.

)\SA 00 A 001

79

[HEADER] ← defines header section
TITLE="PLEASE CONFIGURE TEST SERIES" ← window title
TEXT="Please note!! Modify entries in: c:\saturn2\..\new_campaign.spp" ← bold header

 $[ICON] \leftarrow defines icon$ $PATH="c:\saturn2\icons\AMOtronics_logo.jpg" \leftarrow top right AMOtronics Logo (can be customized)$ $POS_X="436" \leftarrow relative pixel position in window$ $POS_Y="7" \leftarrow POS_X="0"; POS_Y="0" is the top left corner$ $WIDTH_X="100" \leftarrow max. pixel size in X$ $WIDTH_Y="100" \leftarrow max. pixel size in Y$

[STRUCT] \leftarrow defines the structure of the path

ITEM_1="Letter 1"	\leftarrow 1 st digit of path	e.g. "S"
ITEM_2="Letter 2"	$\leftarrow 2^{nd}$ digit of path	e.g. "A"
ITEM_3="#EMPTY#"	← generates a space	
ITEM_4="Index 1"	← 3 rd digit of path	e.g. "0"
ITEM_5="Index 2"	\leftarrow 4 th digit of path	e.g. "0"
ITEM_6="#EMPTY#"	← generates a space	
ITEM_7="Letter 3"	← 5 th digit of path	e.g. "A"
ITEM_8="#EMPTY#"	← generates a space	
ITEM_9="#number#"	\leftarrow automatically incre	menting index e.g. "001"

[Letter 1] \leftarrow defines parameters for 1st digit

[Letter 2] \leftarrow defines parameters for 2nd digit

80

Organization	Standard site
Test Engineer	A A
Type of Test	Electri B
Size of Test	small C
Weather during Test	Sunsh D

NAME ="Test Engineer" - selection title

SHORT="User" ← not used ITEM_1="A ITEM_2="B" ITEM_3="C" ITEM_4="D" VALUE_1="A" VALUE_2="B" VALUE_3="C" VALUE_4="D"

[Index 1] \leftarrow defines parameters for 3rd digit

Organization	Standard site
Test Engineer	A
Type of Test	Electri Electrical
Size of Test	small Mechanical
Weather during Test	Sunsh Other

NAME ="Type of Test" ← selection title SHORT="Type" ← not used ITEM_1="Electrical" ITEM_2="Mechanical" ITEM_3="Other" VALUE_1="0" VALUE_2="1" VALUE_3="X"

[Index 2] \leftarrow defines parameters for 4th digit

Organization	Standard site		
Test Engineer	A		
Type of Test	Electri	cal	
Size of Test	small	small	<50
Weather during Test	Sunsh	medium	<100
)		large	<200
		gigantic	>200

NAME ="Size of Test" ← selection title SHORT="Size" ← not used ITEM_1="small <50"

ITEM_2="medium <100" ITEM_3="large <200" ITEM_4="gigantic >200" VALUE_1="0" VALUE_2="1" VALUE_3="2" VALUE_4="3"

[Letter 3] \leftarrow defines parameters for 5th digit

Organization	Standard site
Test Engineer	A
Type of Test	Electrical
Size of Test	small <50
Weather during Test	Sunsh Sunshine
	Clouds (some)
	Clouds (fully)
5	Drizzle
5	Rain
<u></u>	Snow
	Hail

NAME ="Weather during Test" <- selection title

SHORT="Weather" ← not used ITEM_1="Sunshine" ITEM_2="Clouds (some)" ITEM_3="Clouds (fully)" ITEM_4="Drizzle" ITEM_5="Rain" ITEM_6="Snow" ITEM 7="Hail" VALUE_1="A" VALUE_2="B" VALUE_3="C" VALUE_4="D" VALUE_5="E" VALUE_6="F" VALUE_7="G"

81

ANNEX B Result parameters

B.1 Basic Short-Circuit Test Duty T60

Name	STL parameter	Description
Making Current (peak) L1	lp_L1_#	
Making Current (peak) L2	lp_L2_#	
Making Current (peak) L3	lp_L3_#	
Breaking current (r.m.s.) L1	lbreak_L1_#	
Breaking current (r.m.s.) L2	lbreak_L2_#	
Breaking current (r.m.s.) L3	lbreak_L3_#	
Breaking current (average)	lbreak_avr_#	
Recovery voltage (r.m.s.) L1	U_rec_L1	
Recovery voltage (r.m.s.) L2	U_rec_L2	
Recovery voltage (r.m.s.) L3	U_rec_L3	
Recovery voltage (Average value between phases)	U_rec_avr	
Transient recovery voltage (TRV)		
Voltage u1	u1_#	
Time t1	t1_#	
TRV peak value uc	uc_#	
Time t3	t3_#	
Time delay td	td	
Rate of rise uc/t3	uc_rise	
Closing Operation		
Voltage of closing device	Ucd_#	
Closing time	tcl_#	
Pre-arcing time	tprearc_#	
Make time	tmake_#	
Opening Operation		
Voltage of closing device	Uod_#	
Opening time	top_#	

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

Axilane Instruments, 81 rue des Joncs Marins, 91620 La Ville du Bois - tél : 09.05.60.40.20 fax: 09.55.60.40.20 - Web: www.axilane.com - eMail: info@axilane.com

Arcing time L1	tarc_L1_#	
Arcing time L2	tarc_L2_#	
Arcing time L3	tarc_L3_#	
Break time	tbreak_#	

B.2 Cable-Charging Current Switching Tests

Name	STL parameter	Description
Applied voltage (rms)	Us	
Making Current (peak) L1	lp_L1_#	
Making Current (peak) L2	lp_L2_#	
Making Current (peak) L3	lp_L3_#	
Making Current (peak) Closing angle (rel. to peak appl. voltage)		
Test voltage (rms) L1	Ubreak_L1	
Test voltage (rms) L2	Ubreak_L2	
Test voltage (rms) L3	Ubreak_L3	
Test voltage (rms) Average value (phase to phase)	Ubreak_avr	
Breaking current L1	lbreak_L1_#	
Breaking current L2	lbreak_L2_#	
Breaking current L3	lbreak_L3_#	
Breaking current (average)	lbreak_avr_#	
Recovery voltage - Across circuit- breaker (peak) L1	Uc_L1	
Recovery voltage - Across circuit- breaker (peak) L2	Uc_L2	
Recovery voltage - Across circuit- breaker (peak) L3	Uc_L3	
Recovery voltage - Supply side (rms) L1	U_rec_L1	
Recovery voltage - Supply side (rms) L2	U_rec_L2	
Recovery voltage - Supply side (rms) L3	U_rec_L3	
Recovery voltage - Average value (phase to phase)	U_rec_avr	
Closing Operation		

www.amotronics.de

84

Voltage of closing device	Ucd_#	
C-Operation - Closing time	tcl_#	
C-Operation - Pre-arcing time L1	tprearc_L1_#	
C-Operation - Pre-arcing time L2	tprearc_L2_#	
C-Operation - Pre-arcing time L3	tprearc_L3_#	
Opening Operation		
Voltage of opening device	Uod_#	
O-Operation - Opening time	top_#	
O-Operation - Arcing time L1	tarc_L1_#	
O-Operation - Arcing time L2	tarc_L2_#	
O-Operation - Arcing time L3	tarc_L3_#	

B.3 No-Load Operations

Name	STL parameter	Description
Closing Operation		
C-Operation - Voltage of closing device	Ucd_#	
C-Operation - Closing time L1	tcl_L1_#	
C-Operation - Closing time L2	tcl_L2_#	
C-Operation - Closing time L3	tcl_L3_#	
Opening Operation		
Voltage of opening device	Uod_#	
O-Operation - Opening time L1	top_L1_#	
O-Operation - Opening time L2	top_L2_#	
O-Operation - Opening time L3	top_L3_#	

B.4 Short-Circuit Making Tests

Name	STL parameter	Description
Applied voltage (phase-to-phase)		
Pre-arcing voltage L1		
Pre-arcing voltage L2		
Pre-arcing voltage L3		

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

Axilane Instruments, 81 rue des Joncs Marins, 91620 La Ville du Bois - tél : 09.05.60.40.20 fax: 09.55.60.40.20 - Web: www.axilane.com - eMail: info@axilane.com

85

Making current L1	lp_L1	
Making current L2	lp_L2	
Making current L3	lp_L3	
Short-circuit current L1	lac_L1_1c_#	
Short-circuit current L2	lac_L2_1c_#	
Short-circuit current L3	lac_L3_1c_#	
Short-circuit current (average)	lac_1c_avr	
Duration of short-circuit	t_sc_tst	
C-Operation - Voltage of closing device		
C-Operation - Pre-arcing time		

B.5 Out-of-phase Making and Breaking Tests, Test Duty OP2

Name	STL parameter	Description
Applied voltage	Us	
Making Current (peak) L1	lp_L1	
Making Current (peak) L2	lp_L2	
Making Current (peak) L3	lp_L3	
Breaking current (r.m.s) L1	lbreak_L1	
Breaking current (r.m.s) L2	lbreak_L2	
Breaking current (r.m.s) L3	lbreak_L3	
Breaking current (r.m.s) (average)	Ibreak_avr	
Recovery voltage (r.m.s) L1	U_rec_L1	
Recovery voltage (r.m.s) L2	U_rec_L2	
Recovery voltage (r.m.s) L3	U_rec_L3	
Transient recovery voltage (TRV)		
Voltage u1	u1_#	
Time t1	t1_#	
TRV peak value uc	uc_#	
Time t3	t3_#	
Time delay td	td	
Rate of rise uc/t3	uc_rise	
Closing Operation		

www.amotronics.de

Latest changes: 16 March 2015 1:05 PM

Axilane Instruments, 81 rue des Joncs Marins, 91620 La Ville du Bois - tél : 09.05.60.40.20 fax: 09.55.60.40.20 - Web: www.axilane.com - eMail: info@axilane.com

Voltage of closing device	Ucd_#	
C-Operation - Closing time	tcl_#	
C-Operation - Pre-arcing time	tprearc_#	
C-Operation - Make time	tmake_#	
Opening Operation		
Voltage of opening device	Uod_#	
O-Operation - Opening time	top_#	
O-Operation - Arcing time L1	tarc_L1_#	
O-Operation - Arcing time L2	tarc_L2_#	
O-Operation - Arcing time L3	tarc_L3_#	
O-Operation - Break time	tbreak_#	

B.6 Short-Time Withstand Current and Peak Withstand Current Tests

Name	STL parameter	Description
Peak withstand current L1	lp_L1_#	
Peak withstand current L2	lp_L2_#	
Peak withstand current L3	lp_L3_#	
Short-circuit current - First cycle L1	lac_L1_1c_#	
Short-circuit current - First cycle L2	lac_L2_1c_#	
Short-circuit current - First cycle L3	lac_L3_1c_#	
Short-circuit current - Last cycle L1	lac_L1_end_#	
Short-circuit current - Last cycle L2	lac_L2_end_#	
Short-circuit current - Last cycle L3	lac_L3_end_#	
Short-circuit current - Equivalent current L1	lac_L1_tst	
Short-circuit current - Equivalent current L2	lac_L2_tst	
Short-circuit current - Equivalent current L3	lac_L3_tst	
Short-circuit current - Equivalent current (average)	lac_avr	
Short-circuit current - Duration of short- circuit	t_sc_tst	

www.amotronics.de

Short-time withstand current L1	lac_L1_ref	
Short-time withstand current L2	lac_L2_ref	
Short-time withstand current L3	lac_L3_ref	
Short-time withstand current (average)	lac_ref_avr	
Short-time withstand current (Related to rated duration of short-circuit)	t_sc_soll	
Duration of short-circuit	t_sc_rel	
Related to rated short-time withstand current	lac_ref_avr_soll	

B.7 Basic Short-Circuit Test Duty T100a

Name	STL parameter	Description
Breaking current (r.m.s.) L1	lbreak_L1_#	
Breaking current (r.m.s.) L2	lbreak_L2_#	
Breaking current (r.m.s.) L3	lbreak_L3_#	
Breaking current (r.m.s.) (average)	lbreak_avr	
Breaking current - last current loop (peak) - L1	lbreak_peak_L1	
Breaking current - last current loop (peak) - L2	lbreak_peak_L2	
Breaking current - last current loop (peak) - L3	Ibreak_peak_L3	
Breaking current - Duration of the last current loop L1	tbreak_L1	
Breaking current - Duration of the last current loop L2	tbreak_L2	
Breaking current - Duration of the last current loop L3	tbreak_L3	
DC-component L1	ldc_L1	
DC-component L2	ldc_L2	
DC-component L3	ldc_L3	
Recovery voltage (r.m.s.) L1	U_rec_L1	
Recovery voltage (r.m.s.) L2	U_rec_L2	
Recovery voltage (r.m.s.) L3	U_rec_L3	

www.amotronics.de

88

Recovery voltage (Average value between phases)	U_rec_avr	
Transient recovery voltage (TRV)		
Voltage u1	u1_#	
Time t1	t1_#	
TRV peak value uc	uc_#	
Time t3	t3_#	
Time delay td	td	
Rate of rise uc/t3	uc_rise	
Opening Operation		
Voltage of closing device	Uod_#	
Opening time	top_#	
Arcing time L1	tarc_L1_#	
Arcing time L2	tarc_L1_#	
Arcing time L3	tarc_L1_#	
Break time	tbreak_#	

81 rue des Joncs Marins, 91620 La Ville du Bois www.axilane.com - info@axilane.com Tél : +33.(0),950.60.40.20 - Fax : 09.50.60.40.20 N° 478891641 RCS EVRY

www.amotronics.de